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Gravitational encounters in the “Newton” regime:
l

e orbits are nearly linear
ethe number of stars, N, is large
eencounters are random

(Eddington, Chandrasekhar, Ogorodnikov, Henon, Spitzer, Binney & Tremaine....)
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The contribution to the Fokker-Planck equation for the distribution function for gases, due to particle-
particle interactions in which the fundamental two-body force obeys an inverse square law, is investigated.
The coefficients in the equation, (Av) (the average change in velocity in a short time) and (AvAv), are
obtained in terms of two fundamental integrals which are dependent on the distribution function itself.
The transformation of the equation to polar coordinates in a case of axial symmetry is carried out. By
expanding the distribution function in Legendre functions of the angle, the equation is cast into the form
of an infinite set of one-dimensional coupled nonlinear integro-differential equations. If the distribution
function is approximated by a finite series, the resultant Fokker-Planck equations may be treated numeri-
cally using a computing machine. Keeping only one or two terms in the series corresponds to the approxima-
tions of Chandrasekhar, and Cohen, Spitzer and McRoutly, respectively.

I. INTRODUCTION

N dealing with the nonequilibrium properties of

systems whose particles obey an inverse-square law
of interaction, it is convenient to make use of the fact
that under most circumstances small-angle collisions
are much more important than collisions resulting in
large momentum changes.! This leads to the method
often used for treating such systems, in which one
expands the collision integrand of the Boltzmann

are two-body interactions described by the associated
differential scattering cross sections, and (b) that the
distribution function is isotropic in space and velocity
space. Spitzer and collaborators®* have extended this
calculation to the case in which the distribution function
is of the form f@-+uf®, where f©@ and f® are isotropic
and p is the direction cosine between the particle tra-
jectory and some preferred direction in space, and f®
1s assumed to be small.



Evolution to steady state (Newton)







Characteristics of the “Kepler” regime:
!
e orbits are nearly Keplerian

ethe number of stars, N, is not large

eencounters are correlated



Orbits are nearly Keplerian
— orbital orientations are (nearly) fixed
— torques between stars are (nearly) fixed

torque Gm, Gmy,
orbit — i e N
G
net torque ~ v .N L
a
_dL
)

d
~ — Ja(l —e?
t\/GMa( e

2 A/ GM. %\/ 1 —e? (Rauch & Tremaine 1996)



Coherence Time

Torques remain fixed for a time ~ t.on, the
coherence time.
!

tcon = the typical precessional time-scale

Apsidal Precession

w = “argument of periastron”
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Core radius:

dL
dt
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Surface Density (stars/arcsec?)
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Schwarzschild




Sources of Apsidal Precession

|. Relativistic (“Schwarzschild™) precession:

dw 27 3GM,
dt P c2a(l —e2)

@ = argument of periastron

2. Newtonian (“mass’) precession:

dont 2m M, (a)
G DA

9(6)7 g(l) =0



Where the coherence time is
determined by GR precession.

log,, time (yr)

a =~ (’I“;1 ’I“?nﬂ)l/g

log,, radius (mpc) S
P § a 1 A 10_3 M, S Tinfl e
gt 4 x 106 Mg 3 pc



“Coherence time” refers to the average behavior
of orbits at a given radius.

In the “Schwarzschild” regime, eccentric orbits can
precess much faster than average.

!

This is the origin of a new phenomenon: the
“Schwarzschild barrier”.

!
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Two criteria have been proposed for the barrier location.
Both are based on a comparison of time-scales.

Criterion |:
GR precession time = time for /N torques to change L

M,
— \/1—62:T9 N (a)

a M,(a)

Criterion |I:
GR precession time = coherence time

Tl h
UG e iy e
a P(a)

(Merritt et al. 201l [}
(Hamers, Portegies Zwart & Merritt 2014)

(Baror & Alexander 2014)
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What about a star that begins

its life “below the barrier”?
|

The barrier acts like a
one-way membrane !



S-stars: Below the barrier ?
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To lowest PN order, BH spin
induces a nodal precession of

True anomfly

Argument of 3/2
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Lense-Thirring torques > “vector resonant relaxation” torques.
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Important questions:
|

— What is the steady-state distribution, N(L), near the
Schwarzschild Barrier?

Can it be described via the Fokker-Planck equation?
Or is a more sophisticated approach needed?

|
— How do eccentricities evolve in the “Kerr” regime?






